

<u>US LHC Accelerator Research Program</u> <u>bnl - fnal- lbnl - slac</u>

Phase 1 Upgrade Proposals:
Inner Triplet Dipoles
Technical Performance
P. Wanderer
DOE Review
June 20, 2008

Requirements

Magnet gap	120 mm
B•L @ injection	1.7 T•m per interaction side
B•L @ top energy	27 T•m per interaction side
Good Field Region	radius 50 mm
dB/B in GFR at injection	± 5•10 ⁻⁴
dB/B in GFR at top energy	± 2•10 ⁻⁴

D1 dipoles at IR 1, 5

- LIUWG (LHC IR Upgrade Working Group) report on D1 (21Feb08): replacing present D1 dipoles with superconducting dipoles would have three advantages:
 - Dipole aperture could match quad aperture (~ 110-120 mm)
 - Longer slot length available for crab cavities, other equipment
 - Lower cost than replacement resistive dipoles.

RHIC DX dipoles:

- sufficient aperture (180 mm)
- field (3.6 T, $L_m = 3.7$ m) with two DX = 27 T·m (D1) in one cryostat
- yoke o.d. = 622 mm [CERN D1 has 570 mm o.d.]
- L = 49 mH, 6.8 kA and
- $-6.8 \text{ kA} \rightarrow 4.4 \text{ T}$, 1100 kJ stored energy

DX Cold mass cross section

FROM DX TO D1

- Operating field: 4.4 T ⇒ 3.7 T
- Redesign: Yoke vertical dimension: 622 mm ⇒ 570 mm
 - Lower operating field makes this possible w/o too much flux leakage or saturation
 - See preliminary designs by R. Gupta
- Redesign: Coil ends reduce tilt of cable w r to beam axis, increase #
 of spacers ⇒ increased mechanical stability
- Field quality (same 2D coil, new yoke)
 - Geometric sextupole, decapole ok
 - High field (saturation) holes in yoke for control
 - Injection measure at lower currents to correspond to LHC injection

Cost and Schedule

- Mike Anerella has prepared preliminary versions of the schedule and cost, assuming FY10 (Oct. 1, 2009) start of construction project.
- Need funds in FY09 to prepare for CD1 and CD2 reviews.
 Placeholder: \$600k.
- Additional FY09 funds (i.e., \$18 M total LARP/LAUC budget) would significantly increase schedule contingency. Use to purchase long lead-time items (superconductor, yoke, collars, cold bore tubes, ...).
 - Need CD3a to purchase long-lead items

SUMMARY

- The RHIC DX cold mass needs only two modifications (yoke o.d., coil ends) in order to meet the (not-yet-official) first-order list of requirements for a superconducting D1.
- Moving forward on the needed time scale, within funding constraints, will be a challenge.